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The aim of this paper is to present @ method for solving the time-
domain three-dimensional Maxwell equations, which can be coupled
with a patticle solver. For this purpose, Maxwel's equations are
reformulated as a constrained wave equation system, with Lagrange
multipliers associated to he conditions V.8 =0 and V- £ — pfe,. We
approximate both the fields and the Lagrange multipliers with a finite
clomemnt method using a Taylor Hood element. €0 1993 Asndrinic Pinss, ne.

{. INTRODUCTION

The numerical modeling in plasma physics as well as in
hyperfrequency devices or vacuum diode technology,
requires to develop three-dimensional Viasov-Maxwell
solvers in the time domain, which can deal with arbitrary
geometries. In this context, a Maxwell solver has to fulfill, if
possible, the following requirements:

1. The clectromagnetic {ields have-to be continuous,
which is a stability condition for the classical Vlasov solvers.

2. The electric field must satisfy Gauss law and the
magnetic ficld must be divergence free.

3. The space and time discretizations have to lead to an
cxplicit scheme in order to avoid the solution of a lincar
system at each time-step.

Most of the numerical codes which are currently developed
are based on finite diflerence approximations ol Maxwell’s
equations om siructured meshes. Such an approach is more
straightorward Lo implement in the simple cases. However,
as soon as the domain geometry becomes too complex or
when local refinements are necessary, the structured mesh
strategy requires a lot of skill, such as domain decomposi-
tion [17] or boundary fiting [2]. On the other hand,
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unstructured meshes provide more flexibility to approximate
complex geometries, to achicve local refinements, and to
eventuaily implement adaptative strategies. But they require
a finite volume or finite element resolution of the Maxwell
equations, which means some kind of integral or variational
formulation, together with the choice of appropriate spaces
of approximation functions.

Up to now, very lew finitc volume or finite element
methods have been developed for the numerical resolution
of the Maxwell equations on unstructured meshes. On the
one hand, the finite volume technique, described and
analyzed in [3,4], does not fulfill condition ! and needs
Delaunay-Voronoi meshes, which is a severe drawback in
3D, On the other hand, finite edge-element methods, such as
conforming H(curl) or H{div) elcment in a “standard” [5]
or “modilied” form [6], implicity satisfy condition 2, but
they do not satisfy conditions i and 3.

The method we shall describe in this paper is close to [ 7],
in the sense that we use decoupled second-order wave
equation formulations of the Maxwell equations, and a P1
conforming finite element discretization. However, in [7],
no control on the divergence of the fields can be obtained.
In the context of scattering calculations, where no external
charges and currents are present, this may not be & major
drawback. The situation is opposite in our case. We thus
cope with the condition 2 by reformulating the Mawxell
equations as a constrained problem, with associated
Lagrange multipliers (which are close to the “correcting
potentinls”™ in the usual methods [R]) We approximate
both the ficlds and the Lagrange multipliers by using a
modihed Taylor-Hood element, which is standard in
incompressible fluid dynamics [9].

2. A CONSTRAINED VARIATIONAL FORMULATION
FOR THE MAXWELL EQUATIONS

2.1. Classical Form of Maxwell's Equations

In this paper, we consider a homogeneous, three-dimen-
sional bounded domain 2 without any symmetry. We will
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SOLVING 3D MAXWELL'S EQUATIONS

therefore use cartesian coordinates {x, y, z). We denote by
I the boundary of Q. We introduce the Maxwell equations

1 E
?EI——VXB=—}10J, (21)

oB
—+VxE=0, (2.2}

or
v.e=L2, (2.3)

o

V-B=0, (2.4)

where

¢ is the speed of the light in the vacuum
o is the magnetic permeability in the vacuum
gy is the diglectric permittivity in the vacuum

and they satisfy

gopoc = 1.

It is well known that the constraint V- B =0 is satisfied at
any time ¢ if it is satisfied at the initial time ¢ =10, Indeed,
VA(VxE)=0 with (2.2} implies (¢/0r{V.Bj=0 and
V-B=V.B(+=0)

Similarly, the constraint V- E=p/e; is satisfied at any
time ¢, provided it ts satisfied at the initial time ¢ =0 and if
the charge conservation equation

op

V- J=0
a:+

(2.5)

holds. Recall that Egs. (2.1), (2.5) and V. (V x By =0 imply
(1/e3)(8/01)(V-E)+ (V- Jy =0 and (8/61)(V - E—p/eg) =0
which leads to V- E— pfe, = (V- E~ pfeg),, -0

However, in the discrete case it may very well happen that
these properties do not pass to the numerical approxima-
tion either because

d
Pr iy, .J,#0,

- (2.6)

where p,, J,, and V- are the discrete charge density, current

density, and divergence operator, respectively, or because

the discrete divergence and curl operators do not satisfy
Vi (Vyx)=0. (2.7)

Therefore a convenient way to deal with this problem is to

introduce the Lagrange multipliers of the constraints (2.3)
and (2.4).
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2.2, The Maxwell Equations as a Constrained Problem

We now introduce the Lagrange multipliers ¢(x, t) and
p(x, 1) of the constraints (2.3), (2.4), which can be viewed
as some sort of electric and magnetic correcting potentials
[8]. We may impose homogeneous Dirichlet boundary
conditions on ¢ and p:

=0 onr, (2.8)
p=0 onrl. (2.9)
The Maxwell equations (2.1)—-(2.4) can be written as
lz(a—EV(p)—Vx B=—puyJ, (2.10)
e\ Ot

63—Vp+VxE=O, (2.11)

ot
V. E=p/eg, {2.12)
V-B=0 (2.13)

We supplement this system with appropriate boundary
conditions. For the sake of simplicity, we will only consider
perfectly conducting boundaries in Sections 2 and 3,
whereas the case of the Silver-Miiller absorbing boundary
condition will be treated in a special section (Section 4). For
the time being, we suppose that

Exn=0 on . (2.14)
Finally, we are given initial conditions
E(t=0)=E,, {2.15)
B(1=0)= B, (2.16)
with the foltowing contraints:
V- Eq=pfe,, (2.17)
V.B,=0, (2.18)
E,xn=0 onl. (2.19)

Obviously, p is identically zero and so is ¢ if p and J satisfy
the charge conservation equation {2.5). Hence, the system of
equations (2.8)-(2.19) is an equivalent formulation of the
classical Maxwell equations.

2.3. Formulation in Terms of Two Second-Order Wave
Equations

The finite element discretization of the Maxwell equa-
tions leads to a very unstable numerical algorithm [10].
Indeed, in [11], Lesaint shows why it is impossible to
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control the oscillations which may appear in such a
formulation. The L>-type control on the solutions via the
energy functional [, (JE|? + (1/¢*) |B]?) dx does not enable
us to control the gradients of the solutions. On the other
hand, a formulation of the Maxwell equations as a second-
order wave equation leads to a H' control on the solution
[12] with an energy functional of the form

L5

For these reasons, we prefer to work with second-order
wave equations for both the electric and magnetic fields, ie.,
for Egs. {2.10) and (2.11).

Differentiating (2.10} with respect to ¢ gives

dB

2 1 2
T+ == VB? .
+ |VE| +62( o + |VB| ))dx

1(52E a_cp_)_v B aJ

2\er w0

and, using (2.11), we obtain, by setting é¢p/0r = ¢,

z 1
6—E+C2V><(V><E)—V¢v= 1y

P 0 dl (2.20)

In the same way, differentiating (2.11) with respect to ¢ gives

P8 /op\ OF
W—V(a)”’x s

and, using (2.10), we obtain by setting dp/dt = P,

2
6—B+02Vx(VxB)—VP=iVxJ.
&g

= (221)

The two vector wave equations (2.20) and (2.21) are
supplemented with the constraints

V.E=pjz,, (2.22)
V-B=0, (2.23)
with the initial conditions
E(t=0)=0, B(r=0)=0, (2.24)
and with the boundary conditions
$=0, P=0 on I, (2.25)
Exn=0, (Vx Byxn=poJxn onl. (2.26)

Moreover, we have to add initial conditions for 8E/8¢t and
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@B/dt, since we are dealing with a second-order problem.
We obtain them in a direct way from (2.10) and (2.11) as

0B
E(t=0)=Vp(t:0)foE0,

1
Z—f{::{)):Vm(::ochVx Bo——Ji1=0). (228)
Q

(2.27)

Observe that the coupling between the fields £ and B is
preserved due to these initial conditions {and due to p and
J with (2.5), but in a implicit way). Let us also remark that
the boundary condition (VxB)xun=p,J=xn on I is a
consequence of the condition Fxn=0. The former is
a Neuman boundary condition, whereas the latter is a
Dirichlet boundary condition. It is an easy matter to show
the equivalence between the formulations (2.8)-(2.19) and
{2.20)-(2.28).

2.4, Variational Formulation

Let us now introduce the variational formulation of the
problem (2.20)-(2.28), which will be the basis of the finite
element methed (cf. Section 3). Observe first that for given
charge density p and current density J, and for given initial
conditions, the problem (2.20)-(2.28) reduces to a set of two
uncoupled initial boundary value problems for the vector
wave equation. Since these two problems are of the same
mathematical nature, we will concentrate on one of them,
namely the B-constrained wave equation.

Now, let C be a sufficiently smooth vector test function.
Taking the dot product of (2.21) by C and integrating over
Q yields

8°B
j ——Z-.Cdx+c2j (Vx (VxB))-Cdx
o 6t ©

_J’va.c,jx=ij (VxJ)-C dx.

803’2

By using the Green formulae

f (Vx(vxs)).ccjx:j (Vx B)-(VxC)dx

fJ"((VxB)xn)iCdy (2.29)
;
and
j (VxJ).Cdx=j J-(VxC)dx
0Q Q
—j (xn)-Cdy,  (230)
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together with the boundary condition (2.26), we obtain
2

ja_?.cdx+c2f (VX B)-(Vx C)dx— | VP-Cdx
o Of Ied fel

1
=—| 7. (VxC)dx.

£

Then, by using the Green formula
J VP.Cdr=-| PV-Cdx+j P(C-n)dy  (231)
o] 52 r

and the boundary condition (2.25), we have

0’B ,
| S5 Cdv+ct| (VxB)-(VxCldx+| PV-Cdx
o Ot 2 Q

1
=£—OJQJ-(ch)dx.

Let us next turn to Eq. {2.23). For any sufficiently smooth
function ¢, we can write

Lv-squ=0.

We now introduce the functional spaces, with the classical
notations

H(curl, Q)= {ve L}R2)*, Vxve L}(2)*},
H(div, Q)= {ve L}R2)’, V-ve L} (2)},
HY Q)={pe L} (Q),Vpe L}(2)}.

Then, we define

Y = H(curl, 2)n H{div, Q),
Yo={FeY, Fxn=0onT}

and

Z=H\Q),
Zo={FeZ Fxn=0onr}

Hence, a variational formulation of the problem is to find
(B(#), P(r})e Y e L}(Q) as the solution of the problem

2

j a—B-(:a’erczj (VxB).(ch)dx+f PV.Cdx
2

ar fol Q

1
=——j J-(VxC)dx, VYCeY, (2.32)
Egn

381/109/2-6
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LV-Bq dx=0, VYgel(Q), (2.33)
B(0)= B, (2.34)
%;(t=0]=Vp(t=0)—VxEo. © (2.35)

Observe that we do not require any boundary condition on
I for the Lagrange multiplier P anymore. This will make the
numerical approximation easier.

We formally show that any sufficiently smooth solution of
the formulation (2.32)3(2.35) is a solution of the initial
boundary value problem. It follows from (2.32), {2.33) that
we have, first in the distributional sense, and then in the
classical sense since the fields are smooth,

i 1 .
=S+ Vx(VxB)-VP=—Vx/J, in £,
ot £

V-B=0, in Q.

Then, by using Green’s formulae (2.29), (2.30), (2.31), we
obtain, for any Ce Y,

CEI ((VxB)xn)-Cdy—j P(C-n) dy

1
=—\ (Jxn) -Cdy.

Eor

{(2.36)

By choosing test functions C such that either C-n or
C x n, vanish, we easily conclude from (2.36) that

1
cA(Vx BYxn=—Jxn, P=0
&y

onl.

The stationary problem associated with the variational
formulation (2.32)}-(2.35} can be seen as a standard mixed
formulation for a constrained problem. It is well known [9]
that such a problem is well posed, if the pair of spaces
(Y, L2(82)) are compatible in a sense expressed by the
following inf—sup condition [973:

faV-Cqdx

3B =0 sup *—————

B0 sup =,
VqEI_Z(.Q].

z B gl 20 {2.37)

This condition is indeed fulfilled in our case (see [137]). The
classical semi-group theory allows us to conclude that the
time dependent problem (2.32)-(2.35) is also well posed.
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Furthermore, since Pe L?(2), there exists a unigue
&e H}(2) such that A¢ = P, Thus, C= V¢ belongs to Y and
may be chosen as test function in {2.32). This yields

& 5
EL BVE dx+jg |P|? dx =0,
By using Green’s formula (2.31) and Eq. (2.33), we obtain
[ iprax=o.
[

This variational formulation indeed preserves the property
that the Lagrange multiplier is identically zero.

Let us now introduce a second variational formulation
whose form will appear more appropriate for the numerical
computation: The augmented Lagrangian formulation. By
using the property that V. B=0, one can equivalently add
in (2.32) the term

j V.BV-Cdx, VYCeV.

2

Then, taking into account the property [14]: For any
B, Ce H'(Q) = Z, we have

j (VxB).(ch)de V.BV.Cdx
£2 2

3
=j VB:VCdx+ Y j (VB,xn) (u,x C) dy,
12 r

=1

(2.38)

where u,, 1 <« <3, denote the canonical basis of R?, and
the double dots :, the contracted product of two tensors.
We find

2
5—f-Cdx+c2j VB:VCdx
Qaf 2 -

3

+c2 § j (VBaxn)-{umXC)dT“’.[

r Q

PV - Cdx

a=1

:lj J-(VxC)dx.
0Q

&o

(2.39)

Note that, in Eq. (2.39), the field B and the vector test
function C have to be in the space Z, whereas in the
formulation (2.32), it is sufficient that they be in the space
Y= H(div, 2)n H(rot, 2). Hence, in case that the two
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spaces are different, in particular when € is a non-convex
polyhedron, the solutions of the Z-formulation differ from
the solutions of Maxwell's equations because they do not
include singularities at corners pointing inside the domain.
Nevertheless, we shall rather use this formulation which
presents some advantages that we will see in a next section.
For a similar purpose, we equivalently replace in (2.19)
faJ-(VxCdxby [, (VxJ)-Cdx+ [ (Jxn) Cdy.

For the inf-sup condition of this formulation, we have
one that is analogous to condition (2.37) (cf. [13]). Hence,
the associated time dependent problem is also well posed.

We cannot choose a vector test function C according to

C=’V§, Aé=Pe

as in the preceding case because the fact that such a C
belongs to Z is not guaranteed. We cannot ensure that
the Lagrange multiplier P is identically zero. Indeed, the
Z -formulation can be seen as leading to a projection of the
solution of the Maxwell equations onto the A’ vector fields
in which singularities due to the reentrant corners are
projected.

We now turn to the second constrained wave equation for
the electric field £ Using similar arguments as above,
we obtain also an augmented Lagrangian formulation.
However, we need to work with the subspace Z, of Z of
vector fields which satisfy the condition E x»,=0. This
remark wili play an important role for the finite element
approximation.

Let us now conclude this section by summarizing the
various variational formulations that we shall approximate.
We are looking for {B(?), P(1))e Z e L*(Q), solutions of the
cquations

L@'Cdx+c2j VB :VCdx

6[2 Q
3
+c2 ¥ j (VB,xn)'(uaxC)dy+J PV-Cdx
w=1"1 2
1 _
80 2
1
+—j (Jxn)-Cdy, VYCeZ, (2.40)
60 r
j V.Bgdx=0, VgelXQ), (2.41)
0
B(0) = B,, (2.42)
%—f{r=0)=Vp(t=0)—VxE0, (243)
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and (E(1), ¢(2))e Z, x L2(2), solutions of the equations

2
a—f-Fdx+c2j VE:VFdx
o ot 2

3
+ ¢ 2

x=1

I (VEaxn)v(uaxF)dy+J _V.Fdx
r 2

c? 1 aJ
- V.-Fdvr——| 2L
SOLp Fdx SOJ'Q& Fdx, YFeZ, (244)
jv-Ewdxzij pudx, WpeL¥), (245)
fo] Epva
E(0) = E,, (2.46)

3E 1
=, (1=0)=Vo(1=0)+?Vx By——Jo. (247)
0

3. A TAYLOR~-HOOD FINITE ELEMENT
DISCRETIZATION OF THE FORMULATIONS
(2.40)~(2.43) AND (2.44)—(2.47)

Starting from the variational formulation (2.40)}-(2.47),
we are now ready to derive a finite element approximation
of Maxwell’'s equations expressed in terms of two
constrained wave equations. As in the continuous case, the
finite element discretization requires the cheice of a pair of
compatible approximation subspaces such that the discrete
analogy of the inf-sup condition (2.37) is verified, with a
constant f§ that is independent of the mesh size 4. The fulfili-
ment of this condition ensures that the discrete problem is
well posed and converges to a solution of the continuous
problem when the mesh size # tends to zero.

The problem of finding such a pair of compatible
approximation spaces has been well studied in fluid
dynamics [9]. But among the possible choices, the
Taylor-Hood clement retained our attention, because by
using an appropriate quadrature formula, it leads to a
diagonal mass matrix without any lumping. It is thus very
well suited to an explicit time discretization.

We actually used the modified Taylor—-Hood element (or
“P,iso P, "), which first requires the definition of two levels
of meshes. A coarser tetrahedrization 75, is first defined,
and then, a finer one 7, is defined by dividing each
tetrahedron K,, into eight subtetrahedra. Therefore, the
nodes {a;, iel,} of the finer tetrahedrization, consist of the
vertices and of the middle of the edges of the tetrahedra
of the coarser one. Then, the approximation spaces for the
vector fields contain functions which are P, -conforming
componentwise on the finer tetrahedrization. More
precisely, they are continuous and their restriction to each
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tetrahedron K, of the finer mesh is a polynomial of degree
one. At the same time, the approximation space for the
Lagrange multipliers consists of the P,-conforming finite
element on the coarser grid. Therefore, much fewer degrees
of freedom are needed for the Lagrange multipliers (only
defined on the nodes {4, /el,,} of 73,), which arc not
interesting physical quantitiecs anyway, than for the
magnetic and electric fields B and E.

Let us new introduce the approximation of the
variational problem {2.40)-(2.47) for each field separately.
We begin with

3.1, The Formulation (2.40)-(2.43)

We introduce the finite element subspaces of the spaces Z
and L() respectively defined by

Z,={F,c%(Q),YK,e 7,, F,, € P}, (3.1)

Lyy={¢ue€ €UQ), YKy € Taps ¢51m-2”€ P} (32)
For any function Fe Z,, we may write
3 c -
Flxy= 3 ) Foéux), (3.3)
x=1 i€
where {¢’},.,, is a basis of Z,, with
¢;=¢ium ¢i(aj}=5g:
i jel, (u, defined in (2.38)).  (3.4)
Similarly, we may write for all function g€ L,;,
g(x)= 3 g¥'(x), (3.5)

ey
where {'},. ,, is a basis of Ly, with

!tb"(am):é.[m’ l’mEIzh-

Hence, we look for approximation of B and P defined by

By(x, )=} ¥ B.(1) 4, (x),

a=1 ey

Pyulx, )= Z P(1) y'(x).

fely

(3.6)

(3.7

So the finite-element method associated with the variational
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formulation (2.40)}-{2.43) amounts to finding ( B,{), P,,(t)) €
Z, % L., solutions of the equations

9’8
I ’“Th'C;,dx+cz.( VB, :VC,dx
o Ot Q
3
+c? Zf (VBk,Xn)-(u,xC,,)de P, V-C, dx
a=1"T fe

=lj (VxJ,)-C, dx

80 2
1

+—[ Uyxn)-Codr,  ¥C,eZ, (3.8)
Lo-r
Jﬂ V. B,q., dx=0, Vga, € Lyy(82). (3.9)

We supplement these equations with fairly natural initial
conditions. We take
B,(0)=11,(B,),

8B,
at

(3.10)

(0)=VII,(po) =V x II,(Ey), (3.11)

where {7, is a suitably defined projector from continuous to
discrete fields. For instance, we take for all nodes a; of 7,
I1,(By) = Byla,),

(B)eZ,. (3.12)

3.2. The Formulation {2.44)-(2.47)

We look for an approximation F, of the electric field E
which belongs to a finite element subspace of Z, for which
the boundary condition (E,xn) =0 is satisfied in an
approximate way. We choose to deal with this condition by
dualizing the constraint (Exn),=0 in the continuous
problem. For the sake of simplicity, we assume that 2 is a
polyedron and that the exact and approximate boundaries
I and I, coincide. We then introduce the Lagrange multi-
plier 4, Ae H~'3(I')? such that (2.44), (2.45) amounts to
finding (E(1), ¢(1), ) e Ze L*(Q) x H~"*(I')’ solutions of

2
[ a—f.Fdx+c2J VE: VF dx
o Ot 2

3

+c* )y j (VE, xn)-(u,x Fydy

a=1"T

+f ¢V-Fdx+f (Axn)-(Fxn)dy
Q r

2

:C—LpV-Fdx

]

! a—Jr-Fc;l’x,
80 .Qat

_1 VFeZ, (3.13)
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'[ V-Efdx
2
=lf prdx, Yy eL¥Q), (3.14)
Epin
| (oxm)(Exn)dy
I
=90, Yve H Y3y, (3.15)
j (L-n)8dy
r
=0, Ve HYX(I). (3.16}

We then introduce the finite element subspace of the
space H ~Y*(I")* according to

M,={Ae¥L VYK eT |, Axre PUKL))  (3.17)
where 7, denotes the triangulation of I” deduced from 7,
and the triangles K are the faces of the tetrahedra element

of I'. We also denote by 7 ({; < 1,), the set of indices of the
nodes a;e I'. For any function 4, e M,, we may write

Lix)= T Lei(x)

. r
iely

(3.18)

where ¢'(x) is the trace on I of the basis function ¢’ defined
by (3.4).
Now, we set

b(F, ).)=L(Axn) AFxn)dy,

YFeZ, NieH AT
Applying this bilinear form b{-, -} to approximate fields
yields

BFu )= 3 | (xm)-(Foxn) 69"
Lierl
VF,eZ,, Yi,eM,. (3.19)
By splitting the integral over I' into integrals over all
Kl eZ !, and by using the property that ¢'¢" #0 if and
only if g, and a; are nodes of the same triangle K% of 71,
we obtain

B(F,, Ly= Y Y (Axng) (Fpxng)
Wl Kk ae
x ‘0" dy, 3.20
Jo 9 @ (3.20)
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where ny denotes the constant outside unit normal of I
on K.

It remains to evaluate the integral of formula {3.20) by
using the following quadrature formula (see Section 5 for
more details)

K

Z v(a;),

uj nodes of K

Lrvdy: (3.21)

h

which is exact for any polynomial ve P'. We then 1 obtain a
first expression for an approximate bilinear form b,(-, -} of
b(-,-) by

Bu(Fys Ag) = 3. Y (ixng)
iGI{i K{;.l.aFK
5 a node of X,
1K
x (Fxng) — (3.22)

However, it leads to easier and cheaper computations if we
replace the outside unit normal ny in (3.22) by a normal #,
defined on each node a;, ie !, of 1. For instance, in the
elementary case where all the triangles K}, one of the ver-
tices of which is g,, are coplanar, all the normals, »,’s, are
equal and may be denoted by #,. We thus can equivalently
replace the expression (3.22) by

b_h(Fh’ Ap) = Z (A;xn)-(Fixny) Z oyl

. r r
iefy Ky

(3.23)

Let us now construct such a normal in the general case.
Consider first the second sum of (3.22), which can be written
according to (for a fixed ie I])

Kr r r KF
Z(Aixnx)-(F,-XnK)l "IZK»Eﬁ'ﬁl ,t;j
K;: 3 ZK:ef{1Kh|

(3.24)

Then, by using an appropriate averaging formula [15], the
expression {3.24) can be approximated by

ne | KT e | KT
(ZA,X——~—K| "'1,).(2fo—"' *"r)
KT foeff [ oA Exfeg*;f Kl
KT
le ! (3.25)
K
Ky
Finally, by setting
ng |KT
e lK| (3.26)

th‘"lKﬂ
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we obtain a second approximation b,(-, -} of the bilinear
form b(-,-)on Z, x M, by

b(Fys 4n}= Z (A;xn)-(Fyxn)e,

ielhr

(3.27)

where

r
|K
o= Y =t
! 3
Khreﬁhrs.l.u,-
isanodeof!(’hr

Of course, the straighter the angles between consecutive
faces are, the more precise the approximation is,
The same work can be done with the bilinear form

(4, 9)=j (L-n) 8y,
I
Yie HYA(ry, Yoe HY2(I).
Introducing the subspace @, of H'?(I") defined by
&,={0e€(N),YKieT ", BlkhrEP,(K,f)}, (3.28)

we can write for e @,,

Bulxy= 3 8.¢'(x), (3.29)
ief]
and for i,e M,, 8,€@,,
c(Ay, O5)= Z Z (4 ng) B,
I,r"el_,f Krs.l. dji, ay
are nodes of K},
xJ'ngﬁ'gﬁ' dy. (3.30)

By using the same integration formula (3.21), we are led to
the approximate bilinear form

| &

il Ay 0y) = Z Z (Z;nx) 8, 3
ierl  Klstg

is a node of K,

(3.31)

which can be rewritten, using the definition (3.27) for the
node-normal,

caldy, 0,)= Z (4; n;) 0,

. r
iefy

(3.32)

Let us first introduce the subspace M 9 of M, defined by

M2 ={4,e My, ci(dy, 0,) =0, ¥0,e0,}. (3.33)
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It is a simple matter to check that, thanks to (3.32), we have

MY={l,eM,, & n=0,Ya,el}. (3.34)

Let us now introduce the finite element subspace of Z,,

Z2={FyeZ,, by(F;,v,)=0,¥v,e M3}, (3.35)

which is not a subspace of Z,,.
Again, it is a simple matter to check that, thanks to the
expression (3.27), we have

Z%={F,eZ,, F,xn,=0,Ya,el}. (3.36)

Hence, the elimination of the approximate Lagrange multi-

pliers i, and &, in the formulation is obvious and leads us
to find (E,(t), ¢,(1)}ye Z x L,,, solution of the equations

2
E
J.'Qa_at—lh'F" dx+c* J‘QVE,,:VF,,dx

3
+¢ Y | (VE,xn) (u,x F,) dy

a=1"1

+J ¢2},V'thx
7]

2

¢
=— V.F d
SD_[QPM h8X

1 r aJ,

—— ) —F YF, eZ?9, .
s M b dx, PRI A (3.37)
J V. E s, dx
2
1
=_J Pty dx, Yane Ly (3.38)
Ln g2

Like in the formulation (3.8)}-(3.9), we supplement these
equations with the initial conditions (see (3.12) for the
definition of I1,),

E(0)=1I1,(E,), (3.39)
g(%(0)=V17;,((Po)+c2V><H,,(Bo}giﬂ,,(‘lo). (3.40)

in Section 6, we shall see how we numerically take into
account the condition E;x#n,=0, Ya,e T, by a projection
algorithm in the spirit of [16].

-4. THE CASE OF THE SILVER-MULLER
BOUNDARY CONDITION

We suppose that a part I', of the boundary I' of Q2
behaves as a perfect conductor (i.e., Exn =0). On the
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other part, I',=I\I";, we have to model the electro-
magnetic interactions between the domain £ and the
exterior. We have chosen the following model: We locally
approximate the boundary ', by its tangent plane, and we
assume that

+ QOutgoing electromagnetic plane waves which propa-
gate normally to the boundary I" of the domain £ can leave
freely £2, without being reflected at the boundary: They are
absorbed at the boundary.

* Ingoing plane waves are allowed to enter normally the
domain £2 and are imposed by cither giving functions e(x, r)
or b(x, t) according to:

(E—cBxn)yxn=(e—chxn)xn

on I, for the magnetic field, (4.1)

or

(cB+Exn)xn=(ch+exnyxn
on I, for the electric field. (4.2)

These conditions are known as the Silver—Miiller conditions
[17]. These conditions are designed in the same spirit as the
ones given in [§, pp. 370-371].

We now turn to the wave equation formulation of the
initial problem, in order to see how the conditions (4.1),
(4.2) can be introduced.

From (2.10), we obtain on [~

J
—(Exn)—cA(VxB)xn= —inn.
g0

2 (4.3)

By differentiating (4.1) with respect to time, we obtainon 7,

c%((an)xn)—cz(VxB)xn

d
=—len—E(efcbxn)xn. (4.4)

&g

Similarly for the electric field, from (2.11) and (4.2), we
obtain

%((Exn)xn)fc(VxE)xn

=£(Cb+exn)xn on ;. (4.5)

Let us next deal with the variational formulation
{2.40)-(2.43). By using the Green formulae (2.29) and
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(2.30), together with the boundary condition (4.4), we
obtain the additional integrals on [,

dB
CL*Z(EXH) (Cxn)dy
d
—J [—(e—cbxn)an-Cdy, (4.6)
I ot
so that (2.40) transforms into

9B oB
LTf Cdx+ec L(Exn)-((:xn)dy

+(‘2J‘ VB :VC dx

+c? Zf (VB,xn)-(u,x C) dy

+JQPV-Cdx

=lJ (VxJ).Cdx+8iL(an)-Cdv
0

Eqg Y@
a
+[ [—(eucbxn)xn]-Cdy, YCeZ.
r Lot
(4.7)

Concerning the variational formulation (2.44)-(2.47),
we use similar arguments as above, so that (2.44) is

transformed into
OF
J-I'z (Exn) (Fxnjdy

CZJ. VE :VFdx
e

2

J‘—Eth

3
+6 Y [ (VE xm) - (u,x Fydy
Fa

x=I

+{ ¢V Fax
‘a

c? 1 aJ
=— V- Fdx—— | — - Fd
L}p * ngat *

—cj’ [E-(cb+exn]xn]de, VFelZ,.
I ot
(4.8)

Finally, it remains to deal with the finite element
discretization of these variational formulations. The discrete
formulation corresponding to the B field is directly obtained
by adding an approximation of the integral term (4.6) to the
formulation (3.8), which becomes
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&°B,

v C;,dx+cf

I,

czj VB, :VC, dx
2

dB
(waT}’xn)-(C,,xn)dy

3

+62 Z j (VBhuxn)'(uszh) dy

a=1"T

+J‘ chV'dex
2

= [ (Wxap Cyx+— j (Jyxn)-C dy

Ep Y2

ad
+ [_ (eh_Cbhxn)Xn:I'Ch d% Vchezhs
r,| 6t

(4.9)

where ¢, and b, are suitably defined approximations of e
and bon I,

The discretization of the formulation for the E field
deserves special attention, particulariy because of the
boundary condition £ x r|, = 0. As in the previous section,
we introduce the normal #;, defined by (3.26) for each node
a; of 71 (Ff'=F]nrI). Observe that, even for the
nodes a} € I'y n I, we define a normal »!, which only takes
into account the faces of the tetrahedra which belong to 1.
We also construct a normal n? of I, at each node a? of 7 2
(77°=F;nTl,;), so that the nodes of I'in [, will
be provided with two “independent normals »} and n}
(this choice is due to the fact that the physical boundary
conditions associated to I, and I, are independent).

Let us now introduce the finite element subspace (without
changing the notations)

Zg:{FhEZh,Fanil:O,Vaiefy_fl}' (410)

Hence we obtain the formulation for the E field by replacing
(3.36) by (4.10) and the equation (3.37) by

8°E

) atz"'-F,,dx+cJ.

Iy

¢E,
<a—{’xn).(thn)dy

czj- VE, . VF, dx
(]

4+ ij (VE,, xn)-(u,x F,) dy

a=1

+[ 42 V-Fds
2

c? 1 aJ
=g.‘- pg,,V-F,,dx——L—"-F,,dx

én g Of
VF,eZY.

—J |: (ch,+e,xn)x n]F,,dy,
" (4.11)
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The above boundary conditions are first-order absorbing
conditions. Following the ideas developed in [18, 197,
we can improve our model by introducing higher order
absorbing boundary conditions. This point will be
addressed in a forthcoming paper.

5. THE QUADRATURE FORMULAE

In order to precisely specify the finite element approxima-
tion of the E and B ficlds formulations, we now have to
evaluate the various integrals which are occurring in these
formulations. We choose to perform an exact computation
for almost all of them. However, it is convenient to use a
quadrature formula to evaluate the ones which need to be
inverted, namely the mass matrices, in order to lead to
easier and cheaper computations, provided it does not
deteriorate the accuracy of the method. First consider terms
of the form (with the notations introduced in (3.3))

L}F,,-G,,dx:i ¥

x=1 i jely

(j ey dx)FiGi,
[v]
F,.G,eZ,,

which appear in (4.9) and also in (4.11). In order to use an
explicit finite difference scheme in time (of leap-frog type)
and to avoid solving a linear system of equations at each
time-step, we need to diagonalize the mass matrix (for each

component)
(fevs)

This is achieved by using the following quadrature formula
on each tetrahedron K, with vertices a,, 1 €k < 4;

(5.1)

LjEdy

LR
| feyax=2R Y fiay, (52)
Ky k=1

This formula is exact if £ e P (K.
Hence, by using the properties of the basis functions
{#%}.e,, and formula (5.2), we approximate (5.1) by

|
al

Y

Ky = supp(g)

L F'¢ dx ~ (5.3)

where supp(¢’) denotes the support of the function ¢’
Formula (5.3), indeed, leads to a diagonal mass matrix.
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Next consider terms of the form
[ (Faxm)- Gy xnyay
Iy
3 . :
-3 3 ([ @xme@prma)
af=1ijecf? 2

x F G, P, GleZ,,

which can be found in (4.9) and also in (4.11). We have now
to evaluate the boundary mass matrix

xfefl.23}

(] @oxn- gy ay) (54)

ijef,?

An exact computation of (5.4) involves terms of the form

I,

2

Pnnt dy. (5.5)

For the same reason as in (5.1), it is convenient, on each side
of Ki*=(aj, a2, a3) of 7} to use the quadrature formula

K3

3

o S(x) dx =~ 2 flag). (5.6)

This formula is exact if f € P,(K *). By using (5.6) on each
K;%in (5.5), we obtain

f p'¢'nn’ dy
F]
|K 3
5 nf,‘cnf(Thé,-j,

K < supp(#)

~

(5.7)

where n% denotes the ath component of the constant out-
side unit normal of I, on K]?c 7 ;% Then following the
idea introduced in Section 3, we define a normal n? at each
node a?, ief]* (see (3.26)), and we use the following
approximation, which coincides with (5.7) if I, is a plane:

f pdin*nh dy

I

K,
Ry .M g

~

)

K12 = suppiéh)

(5.8)

By using this procedure, we obtain a boundary mass matrix
on I',, which is block diagonal, each block being an easily
invertible 3 x 3 matrix.
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6. TIME MARCHING AND COMPUTATION OF THE
LAGRANGE MULTIPLIERS

So far, we have only derived a semi-discrete in space
approximation of the Maxwell system of equations. In order
to obtain an effective method of solution, it remains to
introduce a suitable time-stepping method: we have
adopted a classical leap-frog scheme. For the sake of
simplicity, we turn back to the formulation of Section 3,
in which we have only considered perfectly conducting
boundary conditions, namely E x n = 0.

Given a constant time step Ay, we set t,=n A, 1, n=
(n+ £) At. The electric field E" is defined at time ¢, while the
magnetic field B"*'? is evaluated at time ¢, ;,. We also
denote by (-, -) the classical L? inner product, so that a fully
discrete approximation of Maxwell’s equation is defined as
follows,

6.1. The B Field Formulation

Starting from (3.8), (3.9), for any integer n = 1, we look
for (B"*'2, P**'%)e Z, x L,,, solutions of the equations

(B'H-”z, C,l)‘l‘AlZ(V'C;,, Pn+1,f2)
=(G% Ch),  VC,eZ,,
(V'B"+]/23 ‘hh)ZO,

(6.1)

Vo € Loy, (6.2)

where the right-hand side G contains all the other known
terms coming from the data and the previous time steps.
The initial conditions are also derived from a variational
formulation. We set (see (3.11))

Paul0) = IT,(pg),
E0)= H,(E,).

(6.3)
(6.4)
We need to define B* and B~ 2 from these data. We begin
by writing a semi-discrete (in space) variational formulation

of Eq. (2.11), and we look for (B,(t), p., (1) EZ,x Ly,
solution of the equations,

d
[ Zrcpan=—] puV-Crdx—| (VxE)-Cpax,
o) ot Q 2

YC, e Z,, (6.5)

LV'BMM dx =0, Vg, € L. (6.6}

We then take the time approximation

(Bil,r'Z’ Ch)i%(vlptl,t?)

=(G3, Cy),
(V-BE2 g =0,

YC,eZ,, (6.7)

Vgan € Loy, (6.8)
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where G% again contains terms coming from the data, as
given by the right-hand side of (6.5). It remains now to
invert the system of equations (6.7), (6.8) and (6.1), (6.2).
This is achieved by the aid of an Uzawa algorithm [20].

6.2. The E Field Formulation

Starting from (3.37), (3.38), for any integer # > 1, we look
for (E"*!, ¢"*'Ye Z) x L, solutions of

(E”+1’ F;,)+A[2(V'Fh,¢"+i)

=(GE "N F), VFeZ), (6.9}
(V-E"", )
1
=S_(chs Wan), Vi3, € Loy, (6.10)
0

Here again, the right-hand side G7%*'* contains all the
known terms at time 7, ., 5, from the data and the previous
time steps. For the initial conditions, using similar
arguments as above, we obtain E' by solving the following
system:

(El, Fi:)+AI(V'Fh3 (!D.’!}r)

=(Gg29Fh)9 VFhEZ{.'Za (6°ll)
(V'Ejs ‘1(’21'1}
1
=8'(le;,7 Wan)s Va4 € Ly, (6.12}
0 -

We numerically take into account the discrete boundary
condition on E,, E,; xn, =0, by a projection algorithm.
Namely we introduce the orthogonal projection 0 from Z,
to Z$, defined for any E,e Z, by

QEﬁ € Zg;
(QEI: —E, Fh) =0,

{6.13)

VF,eZ9. (6.14)
The projection Q does not affect the values of £, at the inte-
rior nodes to Q. For any node g, on the boundary, it consists
in an orthogonal projection of £,(a;) onto the node-normal
n;. We then replace the problem (6.9}, (6.10) (or (6.11),
(6.12}) by the equivalent problem, which consists of finding
(E"*1 ¢"*YYe Z, x L,, solution of

(QE™ ', QF,)+ AtV - QF,, ¢"*")

=(G3*'". QF,)., VYF,eZ,, (6.15)
(V-QE" ', y3)
1
:F_(pﬂr! 'yblh)a Vl!’y,ELZh. (616}

oy
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Since the matrix of the projector @ can be computed
directly, the inversion of the system (6.15), (6.16) is easily
achieved numerically by the aid of an Uzawa algorithm. We
refer to [16] for more details.

Remark. When some part of the boundary is absorbing
{ie, Iy# %) and intersects the perfectly conducting
boundary (ie, I'\n I, #), the determination of the
projection Q requires some special care, but is easily found
after some (tedious) elementary calculations.

7. NUMERICAL RESULTS

We now give two numerical examples as a first attempt to
show the validity of the proposed method. A more complete
study about the performance measurements for our
Maxwell solver will be presented in a forthcoming paper.

As a first case, we study a cubic resonant cavity. At time
=0, we initialize the three components of £ and B
randomly in the domain, except at the boundary where we
impose the conditions Exn=0 and B-n=0. Then the
simulation is run during 8192 time steps with a Courant
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number of approximately 0.5 {calculated on the finer mesh).
A Fourigr analysis is performed on the last 4096 time steps
for different field components in several points of the cube.
Figure i shows the spectrum obtained for £ at the center of
the cube. With the mesh we used (constituted by irregular
tetrahedra), the fundamental mode is discretized with about
30 points per wavelength, whereas the last depicted mode is
discretized with about six points per wavelength. As one can
sec there is a very good agreement between the theoretical
3D resonant mode frequencies of the cube (depicted with
vertical arrows in Fig. 1) and the numerical values deduced
from this spectrum.

As a second case, we study the propagation of the TEM
mode in a coaxial cylindrical waveguide, which is of interest
because an analytic expression of the solution is known.
Moreover, this test is a validation of the complete formula-
tion (4.9), (4.11), since it requires the different kinds of
boundary conditions, especially the Silver—Miiller condi-
tions. At time =10, we first initialize the electromagnetic
fields E(0) and B(0) in the whole domain with a discretiza-
tion of the exact solutton (at the initial time ). The coax (also
discretized by irregular tetrahedra) is then illuminated by

' v.AY

0.75 1.00 125

Modulus

0.50

0.25

0.00

2.0‘

0.00

taoo 1

! 600t f,,t 800

a0 Hertn)

Frequencies

FIG. 1.

E, spectrum in a cubic resonant cavity.
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ingoing plane waves which enter normally to the bottom,
according to the relations (4.1) and (4.2). Figures 2a and b
show respectively the transverse and longitudinal sections of
£, obtained after 100 time steps of simulation, with a
Courant number of approximately 0.3. The number of
points per wavelength is of about 24 in the propagation
direction. These figures have to be compared with the
corresponding exact solutions, depicted in Figs. 3a and b.
One can see that there is a good agreement between the
analytic and computed solutions, even if the problem we
deal with is stiff, the exact solutions varying as 1/r (r being
the radius of the transverse section of the coax).

8. CONCLUSION

In this paper, we proposed a constrained formulation of
3D Maxwell’s equations in terms of second-order wave
equations. We then developed a numerical approximation
for both the fields and the Lagrange multipliers, based on
the modified Taylor-Hood finite element. Preliminary
results on unstructured meshes have been presented in the
cases of resonant cavities and coaxial TEM modes, showing
the validity and the accuracy of the method. A more
complete study on various examples for measuring precisely
the performances of the method is actually in progress.
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